9.3 Combining Two Functions: Products

A Definitions	Ex 1. Let $f(x) = x^2$ and $g(x) = \log x$. Find				
The product of two functions is defined by (fg)(x) = f(x)g(x) $(f \times g)(x) = f(x) \times g(x)$	a) $(fg)(1)$ b) $(f \times g)(0)$				
B Domain of the Product of Two Functions The domain of the product of two functions is the intersection of their domains. $D_{fg} = D_{f \times g} = D_f \cap D_g$	Ex 2. For each case, find the domain of the product of the given functions. a) $f(x) = 2^x$; $g(x) = \sin x$ b) $f(x) = \frac{1}{x-2}$; $g(x) = \log x$ c) $f(x) = \sqrt{3-x}$; $g(x) = \log(x+1)$				
 C Point by Point Evaluate <i>fg</i> at every possible number <i>x</i>. Ex 3. The functions <i>f</i> and <i>g</i> are given by their graphs on the right figure. Graph the function <i>fg</i>. 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Ex 4. Prove that the product of two odd functions is an even function.	Ex 5. Complete the following table. Justify your reasoning.					
		fg	even	odd		
		even				
	g	odd				
Ex 6. For each case, justify your answer.	Ex 7. For each case, graph on the same grid the					
 a) Is the product of two polynomial functions a polynomial function? 	functions f and g , and then the graph of the product fg . Use technology (Desmos) to check your answer.					
	a) $f(x) = x$; $g(x) = \sin x$					
b) Is the product of two rational functions a rational function?						
	b) $f(x)$	$=\cos x$; g	$q(x) = \sqrt{x}$			
c) Is the product of two sine functions a sine function?						
	c) $f(x)$	$=x^3$; $g(x)$	$(x) = 0.5^{x}$			
 d) Is the product of two periodic functions a periodic function? 						
	d) $f(x) = \log x$; $g(x) = 10^x$					
Ex 8. Find the zeroes of the product fg where $f(x) = \sqrt{x^2 - 4x}$; $g(x) = \log(2 - x)$	Ex 9. If D_f and D_g are the domains of the functions f and g and if Z_f and Z_g are the sets of zeroes of					
$f(x) = yx - 4x$, $g(x) = \log(2 - x)$	the functions f and g , make a statement about the zeroes of the product fg .					

Reading: Nelson Textbook, Pages 531-537 Homework: Nelson Textbook, Page 537 #3, 5, 8, 12, 17