9.3 Combining Two Functions: Products

A Definitions

The product of two functions is defined by

$$
\begin{aligned}
& (f g)(x)=f(x) g(x) \\
& (f \times g)(x)=f(x) \times g(x)
\end{aligned}
$$

B Domain of the Product of Two Functions

The domain of the product of two functions is the intersection of their domains.

$$
D_{f g}=D_{f \times g}=D_{f} \cap D_{g}
$$

C Point by Point

Evaluate $f g$ at every possible number x.

Ex 3. The functions f and g are given by their graphs on the right figure. Graph the function $f g$.

Ex 1. Let $f(x)=x^{2}$ and $g(x)=\log x$. Find
a) $(f g)(1)$
b) $(f \times g)(0)$

Ex 2. For each case, find the domain of the product of the given functions.
a) $f(x)=2^{x} ; g(x)=\sin x$
b) $\quad f(x)=\frac{1}{x-2} ; \quad g(x)=\log x$
c) $\quad f(x)=\sqrt{3-x} \quad ; \quad g(x)=\log (x+1)$

Ex 4. Prove that the product of two odd functions is an even function.

Ex 5. Complete the following table. Justify your reasoning.

Ex 7. For each case, graph on the same grid the functions f and g, and then the graph of the product $f g$. Use technology (Desmos) to check your answer.
a) $\quad f(x)=x \quad ; \quad g(x)=\sin x$
b) $\quad f(x)=\cos x \quad ; \quad g(x)=\sqrt{x}$
c) $\quad f(x)=x^{3} \quad ; \quad g(x)=0.5^{x}$
d) $\quad f(x)=\log x \quad ; \quad g(x)=10^{x}$

Ex 9. If D_{f} and D_{g} are the domains of the functions f and g and if Z_{f} and Z_{g} are the sets of zeroes of the functions f and g, make a statement about the zeroes of the product $f g$.

Reading: Nelson Textbook, Pages 531-537
Homework: Nelson Textbook, Page 537 \#3, 5, 8, 12, 17

